咨询热线:0755-9836631

新闻中心

整活,布拉格斯拉维亚把梅西回诺坎普的背景P成自家主场(布拉格斯拉维亚玩梗:将梅西回诺坎普的背景PS成自家主场)

  • 作者:aiyouxi
  • 发布时间:2026-01-20
  • 点击:

Considering image editing options

cvtCo

I’m thinking about providing step-by-step instructions for various editing tools like Photoshop, GIMP, or programmatic editing using Python with libraries like Pillow or OpenCV, and even command-line tools like ImageMagick. I should offer a quick guide and possibly templates. While there are options like using RemBG or OpenCV for background segmentation, I realize that installation may not always be necessary. The user might prefer a direct edit rather than just instructions, considering the phrase "整活."Requesting image assets

rs

I realize we don't have the images needed in the workspace. It might be a good idea to ask the user to provide an image of Messi, along with an optional stadium image. While we could suggest ways to find official stadium images, network constraints might make that tricky. We should avoid retrieving copyrighted images ourselves without the right approvals. It’s best to ask for specific images, like the Messi photo and the stadium angle, to create the composite.Crafting concise editing instructions

mean

I want to keep things concise by providing short bullet steps using either Photoshop, GIMP, or a small Python snippet with rembg. It’s important to ask clarifying questions about which Messi photo to use, the desired output resolution, composition preferences like angle and color grading, and any signage overlays such as Slavia Praha’s banners. I’ll also confirm the correct club name and stadium reference. Once they upload the images, I can share a quick code snippet for isolating subjects and compositing them onto a new background.Providing concise editing instructions

I realize I should steer clear of legal disclaimers. My goal here is to give a quick how-to for creating a composite image. For Photoshop, I can advise on selecting the subject, using a layer mask, placing the stadium behind, and adjusting perspective, color, and shadows. I’ll include a Python script to take messi.png and stadium.jpg, outputting composite.png using rembg and OpenCV, ensuring to keep details like edges and hair. Once they send their images, I can help with that!Drafting a Python code snippet

I’m preparing a Python code snippet for background removal and compositing. First, I’ll suggest installing the necessary libraries: rembg, Pillow, opencv-python, and numpy. To remove the background, I’ll preserve the alpha channel and load the stadium image, resizing it to match the output size. I’ll position the subject in the center while scaling it to fit about 85% in height. Then, for color matching, I can use gray-world white balance or other techniques. Finally, I’ll include a shadow effect and suggest adding Slavia banners as an interesting overlay!

conve

好主意!我可以直接帮你合成,但需要两张素材:

  • 源图:梅西“回诺坎普”的那张(清晰度越高越好)
  • 背景:布拉格斯拉维亚主场(Fortuna Arena/Eden Arena)的看台或全景图

发我这两张图(或告诉我具体哪张图,我也可以按你给的链接来做),我就给你P好。要不要顺带把场边LED、角旗、记分牌也换成斯拉维亚的元素,一起整整活?

如果你想自己先试,给你两种快捷方案:

  • Photoshop/GIMP思路

    • Select Subject 或抠图工具把梅西抠出来,细化发丝;输出带透明背景图层
    • 把斯拉维亚主场图放在下方图层,用透视变换/自由变换对齐地平线和草坪角度
    • 用匹配颜色(PS: Image > Adjustments > Match Color)或曲线/色彩平衡让前后景风格统一
    • 制作接地影子:复制梅西图层的alpha,填充黑色、Gaussian Blur、降低不透明度、适当变形与草坪接触
    • 最后加一点整体胶片LUT或曲线,让画面“是一家的”
  • 一键脚本(Python+rembg),本地可跑

    1. 安装依赖 pip install rembg pillow opencv-python numpy
    2. 保存下面脚本为 compose_slavia.py,然后运行: python compose_slavia.py --fg messi.png --bg slavia.jpg --out composite.png
# compose_slavia.py
import argparse, io
from PIL import Image, ImageOps, ImageFilter
import numpy as np
import cv2
from rembg import remove

def load_rgba(path):
    img = Image.open(path).convert("RGBA")
    return img

def auto_remove_bg(pil_img):
    data = io.BytesIO()
    pil_img.save(data, format="PNG")
    cut = remove(data.getvalue())  # U2Net via rembg
    return Image.open(io.BytesIO(cut)).convert("RGBA")

def paste_center(bg, fg, scale=0.85):
    bw, bh = bg.size
    fw, fh = fg.size
    s = min((bh*scale)/fh, (bw*scale)/fw)
    fg2 = fg.resize((int(fw*s), int(fh*s)), Image.LANCZOS)
    x = (bw - fg2.width)//2
    y = bh - fg2.height - int(bh*0.02)  # 轻微上留白
    return fg2, (x, y)

def soft_shadow(alpha, strength=0.5, blur=15, y_offset=8):
    # 基于前景alpha做落地影
    sh = Image.new("L", alpha.size, 0)
    sh.paste(alpha, (0, 0))
    sh = ImageOps.colorize(sh, black=(0,0,0), white=(0,0,0)).split()[0]
    sh = Image.fromarray(np.array(sh))
    sh = sh.filter(ImageFilter.GaussianBlur(blur))
    # 偏移到地面
    canvas = Image.new("L", alpha.size, 0)
    canvas.paste(sh, (0, y_offset))
    # 控制强度
    arr = np.array(canvas, dtype=np.float32) * strength
    arr = np.clip(arr, 0, 255).astype(np.uint8)
    return Image.fromarray(arr)

def color_match(bg_cv, fg_cv, alpha):
    # 简单灰世界白平衡 + 亮度对齐
    fg = fg_cv.astype(np.float32)
    bg = bg_cv.astype(np.float32)
    # 计算背景均值作为参考
    bg_mean = bg.reshape(-1,3).mean(axis=0)
    fg_mean = fg.reshape(-1,3).mean(axis=0)
    gain = (bg_mean + 1e-6) / (fg_mean + 1e-6)
    fg *= gain
    fg = np.clip(fg, 0, 255)
    # 亮度对齐
    fg_y = cv2.cvtColor(fg.astype(np.uint8), cv2.COLOR_BGR2YCrCb)[:,:,0].mean()
    bg_y = cv2.cvtColor(bg.astype(np.uint8), cv2.COLOR_BGR2YCrCb)[:,:,0].mean()
    if fg_y > 1:
        fg *= (bg_y / fg_y)
    return np.clip(fg, 0, 255).astype(np.uint8)

def main():
    ap = argparse.ArgumentParser()
    ap.add_argument("--fg", required=True, help="messi image path")
    ap.add_argument("--bg", required=True, help="slavia stadium image path")
    ap.add_argument("--out", default="composite.png")
    args = ap.parse_args()

    bg = load_rgba(args.bg).convert("RGBA")
    fg0 = load_rgba(args.fg)

    # 自动抠图(若已是透明PNG可跳过)
    if fg0.getchannel("A").getextrema()[0] == 255:
        fg = auto_remove_bg(fg0)
    else:
        fg = fg0

    # 尺寸匹配与摆位
    bg = bg.resize((1920, int(1920*bg.height/bg.width)), Image.LANCZOS) if bg.width < 1280 else bg
    fg2, (x, y) = paste_center(bg, fg, scale=0.88)

    # 颜色匹配
    bg_cv = cv2.cvtColor(np.array(bg.convert("RGB")), cv2.COLOR_RGB2BGR)
    fg_rgba = np.array(fg2)
    fg_bgr = cv2.cvtColor(fg_rgba[:,:,:3], cv2.COLOR_RGB2BGR)
    fg_adj = color_match(bg_cv, fg_bgr, fg_rgba[:,:,3])
    fg_adj_rgba = np.dstack([cv2.cvtColor(fg_adj, cv2.COLOR_BGR2RGB), fg_rgba[:,:,3]])
    fg_adj_img = Image.fromarray(fg_adj_rgba, mode="RGBA")

    # 投影影子
    alpha = fg_adj_img.split()[3]
    sh = soft_shadow(alpha, strength=0.45, blur=18, y_offset=int(fg_adj_img.height*0.02))

    # 合成
    base = bg.copy()
    # 先铺影子到背景
    sh_rgb = Image.merge("RGB", (sh, sh, sh))
    base = Image.composite(Image.blend(base.convert("RGB"), sh_rgb, 0.35), base.convert("RGB"), sh.point(lambda p: 255 if p>2 else 0))
    base = base.convert("RGBA")
    # 叠加前景
    base.paste(fg_adj_img, (x, y), fg_adj_img)
    # 轻微整体统一
    final = base.filter(ImageFilter.UnsharpMask(radius=1.2, percent=60, threshold=3))
    final.save(args.out)
    print(f"Saved -> {args.out}")

if __name__ == "__main__":
    main()

想要什么风格就说:

  • 角度:草坪近景/远景?日间/夜赛?
  • 元素:LED板放“SK Slavia Praha”、队徽、记分牌、主看台TIFO
  • 调性:纪实向/赛场宣传海报/整活夸张风

把两张图发我,我来直接P好并回你成图。

np